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A range of two- and three-dimensional problems is explored featuring the gravity-
driven flow of a continuous thin liquid film over a non-porous inclined flat surface
containing well-defined topography. These are analysed principally within the frame-
work of the lubrication approximation, where accurate numerical solution of the
governing nonlinear equations is achieved using an efficient multigrid solver.

Results for flow over one-dimensional steep-sided topographies are shown to be in
very good agreement with previously reported data. The accuracy of the lubrication
approximation in the context of such topographies is assessed and quantified by
comparison with finite element solutions of the full Navier–Stokes equations, and
results support the consensus that lubrication theory provides an accurate description
of these flows even when its inherent assumptions are not strictly satisfied. The Navier–
Stokes solutions also illustrate the effect of inertia on the capillary ridge/trough and
the two-dimensional flow structures caused by steep topography.

Solutions obtained for flow over localized topography are shown to be in excellent
agreement with the recent experimental results of Decré & Baret (2003) for the motion
of thin water films over finite trenches. The spread of the ‘bow wave’, as measured
by the positions of spanwise local extrema in free-surface height, is shown to be
well-represented both upstream and downstream of the topography by an inverse
hyperbolic cosine function.

An explanation, in terms of local flow rate, is given for the presence of the
‘downstream surge’ following square trenches, and its evolution as trench aspect ratio
is increased is discussed. Unlike the upstream capillary ridge, this feature cannot be
completely suppressed by increasing the normal component of gravity. The linearity
of free-surface response to topographies is explored by superposition of the free
surfaces corresponding to two ‘equal-but-opposite’ topographies. Results confirm the
findings of Decré & Baret (2003) that, under the conditions considered, the responses
behave in a near-linear fashion.

1. Introduction
The behaviour of thin liquid films, whether forced to spread or deposited as a

distinct pattern on the surface of a non-porous substrate, is of enormous significance
to many manufacturing processes. Much is known about the deposition of such
films on flat homogeneous surfaces, see for example Kistler & Schweizer (1997), but
considerable interest has been generated of late concerning the case of thin liquid films
that are forced (gravitationally or centrifugally) to flow over, or encounter, surfaces
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containing topographical features. The latter may be regular and desired (patterned)
or unwanted (a random scratch or speck of dust). Similarly, many manufactured
products, particularly in the electronics sector (micro-devices, sensors, printed circuits,
displays, etc.), usually involve the successive deposition of several thin liquid layers,
combined with photolithography at each stage. Therefore, in the subsequent formation
of the desired component/surface each layer is influenced by the one deposited and
cured previously which, if non-uniform, presents the current wet layer with a surface
that may lead to variations in coating thickness or even instabilities. Whatever the
situation, increasing demands concerning quality and finish have promoted the need
for better understanding of the mechanisms leading to free-surface non-uniformities
and how to control/suppress the occurrence of their attendant undesirable defects.

Most previous investigations have concerned thin film flows over two-dimensional
topography. Important early examples are the combined theoretical and experimental
studies of Stillwagon & Larson (1987, 1988, 1990) and Pritchard, Scott & Tavener
(1992) who considered radial outflow during spin coating and gravity-driven flow
down an inclined plane, respectively. Both sets of authors demonstrated lubrication
theory to be surprisingly accurate for modelling purposes even for cases where it is
not strictly valid, as for the flow over shallow trenches. Stillwagon & Larson (1990)
are also credited with being the first to obtain a one-dimensional analytical expression
for the standing capillary wave at the leading edge of a trench and its associated
downstream exponential decay. Of note also is the work of Roy & Schwartz (1997)
which extended the one-dimensional lubrication approach to general curved substrates
with topography by expressing the problem in curvilinear coordinates. Following a
different tack, Decré, Fernandez-Parent & Lammers (1999) revisited the flow studied
by Stillwagon & Larson (1990) and presented a Green’s function formulation to
the problem. The second-order term contained therein has the effect of locating the
capillary ridge further upstream of the topography, the deeper the trench becomes.

More recently, Kalliadasis, Bielarz & Homsy (2000) returned to the problem of the
flow over a trench under the action of an external body force, solving the assumed
governing one-dimensional long-wavelength, or lubrication, approximation numeri-
cally as a means of analysing further the case of trench depths comparable with, or
larger than, the associated unperturbed film thickness. Their results show that deep
trenches produce an asymmetry, with the step-down leading to a comparatively more
pronounced capillary ridge than the step-up. They also explored the effect of gravity,
showing that it could result in the disappearance of capillary ridges. The stability of the
latter was considered in a subsequent article, Kalliadisis & Homsy (2001). The picture
was essentially completed by Mazouchi & Homsy (2001) who solved the corres-
ponding Stokes problem numerically using a boundary element method and compared
the results with those obtained using lubrication theory. They demonstrated the
importance of the capillary number, Ca, and in particular that increasing it leads to a
diminution or flattening of the capillary ridge, with the free-surface correspondingly
conforming more to the topography of the substrate.

Not surprisingly, flow over three-dimensional topography has received considerably
less attention both experimentally and theoretically, each representing a significant
challenge in its own right. The work of Pozrikidis & Thoroddsen (1991) is an early
and important contribution in this respect for the case of gravity-driven flow of full
liquid films over a particle-like topography. Using a boundary element formulation to
solve the governing Stokes equations numerically they showed even a small particle to
result in a significant upstream and downstream disturbance to the free-surface profile
of the film, in qualitative agreement with the one-dimensional cases cited above: that
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is, a standing ‘bow wave’ capillary ridge upstream of the particle together with an
exponentially decaying, ‘horseshoe’-shaped capillary wake downstream. Other work
of note is that of Peurrung & Graves (1991, 1993) for the case of spin coating over
topography. Their experimental and numerical results are found to be in qualitative
agreement, but for shallow topographies of the order of 1 µm deep the absolute
accuracy of their experimental data is questionable. Hayes, O’Brien & Lammers
(2000) formulated a Green’s function for the linearized two-dimensional lubrication
equations for the flow over a shallow topography which allowed the surface responses
to arbitrary finite topographies to be calculated.

The motivation for the present work is provided by the recently reported painstaking
quantitative experimental results of Decré & Baret (2003) for the case of gravity-
driven flow of thin water films over topography. Building on earlier work (Messé &
Decré 1997; Decré et al. 1998, 1999; Lucéa & Decré 1999), they used phase-stepped
interferometry to obtain detailed free-surface maps for thin films of water flowing
down an inclined plate containing a range of topographies. In all cases, results compare
well with those of earlier studies and, in the case of flow over three-dimensional
topography, with the results of Hayes et al. (2000) for the linearized problem. A
consequence of the latter is that linear superposition may be used to construct an
approximate free-surface response to a complex topography from knowledge of the
responses to regular elementary topographies.

2. Problem specification and mathematical formulation
Flow of a continuous film of liquid, flux Q0, over a plane surface (streamwise extent

LP and span width WP ) inclined at an angle θ to the horizontal arises as part of many
manufacturing processes, with the case of flow over a smooth homogeneous surface
now recognized as a classical problem in fluid mechanics. If the liquid is assumed
Newtonian and incompressible, with constant density ρ, viscosity µ and surface
tension σ , its steady motion in the general sense is governed by the Navier–Stokes
and continuity equations:

ρU · ∇U = −∇P + µ∇2U + ρg, (2.1)

∇ · U = 0, (2.2)

where U =(U, V, W ) and P are the fluid velocity and pressure respectively and
g =(g sin θ, 0, −g cos θ) is the acceleration due to gravity.

In the problems of interest here, the inclined substrate contains well-defined topo-
graphical features of amplitude S0 and form S(X, Y ), with streamwise extent LT

and span width WT , centred at (XT , YT ). These features may completely span the
domain (in which case WT = WP and LT � LP , leading to two-dimensional flow), or
be localized (i.e. WT � WP and LT � LP , giving three-dimensional flow). The former
problem reduces conveniently to solving for the flow in a streamwise cross-section
only, provided WP is sufficiently large for end effects to be negligible. In both cases
the topography may be a protrusion (S0 > 0) or a depression (S0 < 0) as sketched in
figure 1. These are often referred to as ‘peaks’ and ‘trenches’ respectively.

2.1. Full-width topography

The associated two-dimensional flow is analysed by solving equations (2.1) and (2.2)
numerically, and solutions are compared to both theoretical and experimental results
of other authors, and also those obtained from solving the corresponding lubrication
formulation of the problem given below. Apart from generating new results, this
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Figure 1. Schematic diagram of a three-dimensional thin film flowing over a substrate inclined
at angle θ to the horizontal, showing the coordinate system and parameters defining the
topography.

analysis is fundamental to determining the validity of the lubrication approximation
as a suitable means of solving three-dimensional flow over localized steep-sided
topography.

Following Aksel (2000), an appropriate length scale for non-dimensionalization
purposes is the undisturbed fully developed film thickness:

H0 =

(
3µQ0

ρg sin θ

)1/3

, (2.3)

while the characteristic velocity U0 is taken to be the surface velocity of the fully
developed film:

U0 =
3Q0

2H0

. (2.4)

Implicit in the choice of scales (2.3) and (2.4) is the assumption that θ �= 0, i.e. the
substrate is never horizontal. Scaling velocities, axial coordinates and pressure by U0,
H0 and µU0/H0 respectively, and noting the absence of any Y dependence, allows
equations (2.1) and (2.2) to be rewritten in the form:

Re u · ∇u = ∇ · τ + St ĝ, (2.5)

∇ · u = 0, (2.6)

where u = (u, w) is the non-dimensional velocity in the dimensionless (x, z)-plane,
Re= ρU0H0/µ= 3ρQ0/2µ is the Reynolds number, τ = −pI+ ∇u + (∇u)T is the non-
dimensional Newtonian stress tensor, and St = ρgH 2

0 /µU0 = 2/ sin θ is the Stokes
number.

The boundary conditions which close the problem are shown in figure 2. On the
substrate the no-slip condition u =w = 0 is applied and at the inflow and outflow
planes a fully developed velocity profile is assumed:

u = 1
2
St sin θ(2z − z2), w = 0. (2.7)
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Figure 2. Schematic diagram of flow over a one-dimensional (spanwise) topography.

On the free surface the usual stress and kinematic conditions,

n · τ =
1

Ca

dt
ds

and n · u = 0, (2.8)

are imposed (where n and t are the unit normal and tangent to the free surface, and
s is arclength along it). Using scales (2.3) and (2.4), the capillary number is given by

Ca = µU0/σ =
1

2

(
9µ2ρg sin θ

σ 3

)1/3

Q
2/3
0 . (2.9)

Finally, at each end of the domain the dimensionless film thickness is set equal to
one, i.e. the fully developed thickness.

2.2. Localized topography

Three-dimensional steady flow over localized topography is analysed using a lubrica-
tion approximation. The problem to be solved results from a long-wave expansion
of equations (2.1) and (2.2) under the assumption that ε = H0/L0 is small, where
L0 is the characteristic in-plane length scale. Retaining U0 and H0 as defined above,
the resultant lubrication equations for the film thickness H (X, Y ) and pressure field
P (X, Y ) are formulated in terms of the following non-dimensional variables:

h(x, y) =
H (X, Y )

H0

, s(x, y) =
S(X, Y )

H0

, (x, y) =
(X, Y )

L0

,

z =
Z

H0

, p(x, y) =
2P (X, Y )

ρgL0 sin θ
, (u, v, w) =

(
U

U0

,
V

U0

,
W

εU0

)
.

Note that the surface of the substrate is given in terms of the topography function
s(x, y) so that the fluid film lies between z = s and z = h + s. Introducing the above
scalings into the governing equations and neglecting terms O(ε2) yields:

∂2u

∂z2
=

∂p

∂x
− 2, (2.10a)

∂2v

∂z2
=

∂p

∂y
, (2.10b)

∂p

∂z
= −2ε cot θ. (2.10c)
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Equations (2.10a, b) are solved subject to the no-slip condition (u, v) = (0, 0) on the
substrate, z = s, and zero tangential stress at the film surface, i.e.

∂u

∂z
=

∂v

∂z
= 0 at z = h + s. (2.11)

Integrating equations (2.10a, b) twice with respect to z over the film thickness
z ∈ [s, h+ s] subject to the above boundary conditions yields

u =

(
∂p

∂x
− 2

)
(z − s)

(
1
2
(z − s) − h

)
, (2.12a)

v =

(
∂p

∂y

)
(z − s)

(
1
2
(z − s) − h

)
. (2.12b)

That mass is conserved throughout the solution domain gives rise to the constraint

∇ · Q = 0, (2.13)

where Q =
∫ h+s

s
(u, v)T dz. Integrating equations (2.12a, b) to form Q and substituting

into equation (2.13) yields the following steady-state lubrication equation for h in
terms of the pressure field, p:

0 =
∂

∂x

[
h3

3

(
∂p

∂x
− 2

)]
+

∂

∂y

[
h3

3

(
∂p

∂y

)]
. (2.14)

The pressure field throughout the film is obtained by integrating equation (2.10c)
with respect to z, with the constant of integration (setting the pressure datum to zero)
determined by

− ε3

Ca
∇2(h + s) on z = h + s, (2.15)

hence,

p = − ε3

Ca
∇2(h + s) + 2ε(h + s − z) cot θ. (2.16)

Note that the z-dependence in equation (2.16) due to the 2εz cot θ term does not have
any influence on the film thickness h since its partial derivative with respect to both
x and y is zero. Accordingly, this term is omitted in what follows.

So far, the choice of length scale L0 has been arbitrary, but choosing it to be equal
to the capillary length, Lc,

L0 = Lc =

(
σH0

3ρg sin θ

)1/3

=
H0

(6Ca)1/3
, (2.17)

enables the pressure, equation (2.16), to be rewritten as

p = −6∇2(h + s) + 2
3

√
6N (h + s), (2.18)

i.e. in terms of the parameter N =Ca1/3 cot θ , which measures the relative importance
of the normal component of gravity (Bertozzi & Brenner 1997). Note that if N � 1 the
normal component of gravity becomes negligible (Troian et al. 1989), and equation
(2.18) becomes parameter-free in the sense that the behaviour of the thin film will
depend only on the topographic features.

Following others (e.g. Stillwagon & Larson 1990; Peurrung & Graves 1993;
Kalliadasis et al. 2000), s(x, y) is defined via arctangent functions, enabling the
steepness of the topography sides to be controlled easily. For comparison purposes
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later it is convenient to define a coordinate system (x∗, y∗) whose origin is at the
centre, (xt , yt ), of the topography. With (x∗, y∗) = (x − xt , y − yt ) such that h∗(x∗, y∗) =
[h(x∗, y∗) + s(x∗, y∗) − 1]/s0, s(x, y) is given by

s(x, y) =
s0

b0

(
tan−1

(
x∗ − wt/2

γwt

)
+ tan−1

(
−x∗ − wt/2

γwt

))

×
(

tan−1

(
y∗ − lt /2

γwt

)
+ tan−1

(
−y∗ − lt /2

γwt

))
, (2.19)

where γ is an adjustable parameter which defines the steepness of the topography,
A= wt/lt is the aspect ratio of the topography, and

b0 = 4 tan−1

(
1

2γ

)
tan−1

(
A

2γ

)
. (2.20)

The following boundary conditions, resulting from the assumption that the flow is
fully developed both upstream and downstream:

h(0, y) = 1,
∂h

∂x

∣∣∣∣
x=0

= 0,
∂h

∂x

∣∣∣∣
x=1

=
∂p

∂x

∣∣∣∣
x=1

= 0, (2.21)

together with the requirement of zero flux at the boundaries in the spanwise direction:

∂p

∂y

∣∣∣∣
y=0

=
∂p

∂y

∣∣∣∣
y=1

=
∂h

∂y

∣∣∣∣
y=0

=
∂h

∂y

∣∣∣∣
y=1

= 0, (2.22)

effectively close the problem.

3. Method of solution
3.1. Finite element formulation

The finite element (FE) method used to solve equations (2.5) and (2.6) in two dimen-
sions, subject to the given boundary conditions, employs a popular Bubnov–Galerkin
weighted residual formulation that has been applied successfully to a wide variety
of incompressible flow problems. Since it has been described in detail elsewhere,
see for example Christodoulou, Kistler & Schunk (1997), only a very brief overview
is given here. The free surface of the film is parametrized by a ‘spinal’ algebraic
mesh generation algorithm, Kistler & Scriven (1983), and the two-dimensional flow
domain is tessellated using V6/P3 triangular elements (Gaskell et al. 1995; Summers
et al. 2004) giving a piecewise quadratic velocity field and a piecewise linear pressure
field. Note also that topographies in the FE analysis are completely sharp, i.e. corners
are perfect right angles, since there is no need to use the approximating arctangent
functions as in equations (2.19) and (2.20). The free-surface kinematic condition
n · u = 0 is used to determine the free-surface location while the free-surface stress
conditions enter the FE formulation via a boundary integral arising in the weak form
of equation (2.5) – see Kistler & Scriven (1983) for further details.

The nonlinear weighted residual equations are solved using Newton iteration
coupled to a Frontal algorithm (Hood 1976) ideally suited to the long, thin nature
of the computational domain. Since the film profiles are of primary interest here, the
accuracy of these was used as the main criterion in establishing the minimum density
and extent of the computational mesh. The number of elements in the mesh was
systematically doubled until the maximum change in the film profiles on consecutive
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meshes was less than 0.05% when measured in the way described in § 4.1. For each
mesh the locations of the inflow and outflow boundaries were checked to confirm
that they had a negligible effect on the solution. This is particularly important
upstream, because the free surface always features a wave which decays with distance
upstream from the topography. Hence the inflow boundary should be located where
the amplitude of the wave is sufficiently small so that the imposition of h = 1 does
not unduly distort the free surface.

For all the parameter values used in the simulations involving full-width topo-
graphies, it was found (by considering a much larger domain) that the amplitude of
the upstream capillary wave reduces to O(10−7) at a distance of 30Lc upstream of the
topography. Downstream of the topography the free surface relaxes monotonically to
the fully developed film thickness such that after a distance of 15Lc the free-surface
height is within 10−7 of the asymptotic height. These positions were therefore taken
to be sufficient to guarantee the accuracy of the solution of the whole domain. The
first two wavelengths of the capillary wave lie typically within 15Lc or 20Lc of the
topography, and so this could be considered as a minimum domain size. Note that
localized topographies produce effects which are felt further downstream than in the
full-width case, and therefore a larger domain size is needed to produce the results
in § 4.2. In the step-up/-down and trench problems domain tessellations comprising
respectively 5650 and 5900 elements were utilized; in each case 701 spines were used
to parametrize the free-surface position.

3.2. Finite difference formulation

Although using a lubrication approximation to model the flow over localized topo-
graphy effectively reduces the dimensionality of the problem by one, solution of the
resultant equations still poses a considerable computational challenge due to the
stiffness introduced via the surface tension. Accordingly, the recently derived accurate
and robust Full Approximation Storage (FAS) multigrid approach of Gaskell et al.
(2004) is employed since its fully implicit nature has already been demonstrated to
offer increased efficiency, particularly when fine grid resolution is essential. In addition,
rather than substituting equations (2.16) or (2.18) for the pressure into equation (2.14)
to yield a fourth-order partial differential equation for the film thickness h, these two
coupled equations are retained and solved in their present form since they are simpler
to incorporate into the FAS multigrid solution strategy.

Equations (2.14) and (2.18) are discretized using second-order-accurate central
differences on a square computational domain so that (x, y) ∈ Ω = (0, 1) × (0, 1). The
mesh is uniformly structured with (2k + 1) nodes in each direction. Unless stated
otherwise, k takes the value 10, yielding solutions on a 1025 × 1025 mesh containing
in excess of one million grid points. The corresponding coupled algebraic analogues
are:

0 =
1

�2

[
pi+1,j

1
3
h3|i+1/2,j + pi−1,j

1
3
h3|i−1/2,j − pi,j

(
1
3
h3|i+1/2,j + 1

3
h3|i−1/2,j

)
− 2�

(
1
3
h3|i+1/2,j − 1

3
h3|i−1/2,j

)
+ pi,j+1

1
3
h3|i,j+1/2

+ pi,j−1
1
3
h3|i,j−1/2 − pi,j

(
1
3
h3|i,j+1/2 + 1

3
h3|i,j−1/2

)]
, (3.1)

pi,j +
6

�2
[(hi+1,j + si+1,j ) + (hi−1,j + si−1,j ) + (hi,j+1 + si,j+1)

+ (hi,j−1 + si,j−1) − 4(hi,j + si,j )] − 2
3

√
6N (hi,j + si,j ) = 0, (3.2)
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for each (i, j ) in the computational domain, where �= 2−k is the spatial increment.
The terms 1

3
h3|i±1/2,j±1/2, sometimes referred to as prefactors, result from linear

interpolation between the neighbouring vertices,

1
3
h3|i+1/2,j = 1

2

(
1
3
h3

i+1,j + 1
3
h3

i,j

)
, (3.3)

with analogous expressions for the other prefactors.
Boundary conditions (2.21) and (2.22) are eliminated from equations (3.1) and (3.2),

as opposed to introducing ghost nodes at the boundary, since this is found to reduce
the bandwidth of the matrix to be inverted. A computational domain extending over
100 capillary lengths was found to be sufficient to ensure accurate solutions. The
resulting system of nonlinear algebraic equations is solved for hi,j and pi,j using
an FAS multigrid algorithm with V-cycling (Brandt 1977). In brief, Gauss–Seidel
relaxation is employed with a ‘red-black’ ordering of the nodes. At each level, down to
the coarsest, a fixed number of sweeps is applied to a linearized form of the equations
in order to update previous estimates of the solution on that grid. At the coarsest
level, the system of algebraic equations is solved exactly using Newton iteration.
A further series of Gauss–Seidel post-smooths is then applied on successively finer
grids in order to complete the V-cycle. The recent comprehensive article by Gaskell
et al. (2004) gives a more detailed explanation of the methodology.

The only other feature of importance to note is that the problems of interest
are steady state. Obtaining such solutions is a little more demanding than in the
case of transient behaviour where a small fixed number of V-cycles is sufficient to
reduce residuals by a constant factor for successive time steps (Gaskell et al. 2004).
Accordingly, the nonlinearity in the discrete algebraic system is found to be more
severe than experienced in the case of implicit time stepping, and the quality of
the initial guess is much poorer, which in turn means that typically more V-cycles
are required. Hence, it was found that a total of about 15 V-cycles is necessary to
reduce residuals to within that of the discretization error, 10−6, on the prescribed
finest 1025 × 1025 mesh level. However, even with such a necessary large number
of V-cycles the multigrid algorithm proves to be a robust and efficient scheme, with
its rate of convergence independent of the final specified finest mesh. As a check,
the problems considered in § 4.1 were also solved using the time adaptive scheme
described in Gaskell et al. (2004) starting from an initial condition of a flat free-
surface profile. In all cases these solutions evolved to correspond exactly to their
steady-state counterparts, as shown in figure 3. Unsurprisingly, although the transient
method of solution requires significantly fewer V-cycles per iteration the overall time
required to reach steady state is significantly more due to controlling the time step in
order to achieve accurate solutions to a specified temporal error tolerance.

4. Results and discussion
4.1. Flow over full-width spanwise topographies

First, comparisons are made with the theoretical predictions of Mazouchi & Homsy
(2001) who used the boundary element (BE) method to study the Stokes flow of a
thin liquid film over a one-dimensional trench. In fact, the trench was wide enough
to ensure that the flow could be considered as that over a step-down topography
followed by flow over an effectively independent step-up. In this case the substrate was
vertical, i.e. θ = 90◦. Figure 4 compares Mazouchi & Homsy’s computed free-surface
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Figure 3. Free-surface profile for flow over a one-dimensional trench, demonstrating the
progression of the transient solution towards the solution of the steady-state equation.
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Figure 4. Comparison of film profiles calculated by the FE method with the boundary element
profiles of Mazouchi & Homsy (2001). The trench has depth 2H0 and width 40H0. Note that
for ease of comparison with Mazouchi & Homsy, their axis scales are used. Hence x and h
are both scaled by H0.

profile, for Ca = 0.005 and 0.05, with corresponding solutions found using the FE
method with Re set to 0. Note that, due to a different choice of velocity scale, the
capillary number used throughout the present work is one half of that defined by
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Mazouchi & Homsy (2001). It is clear from the figure that excellent agreement is
achieved between the FE and BE predictions when Re = 0.

Also shown in the figure are two FE-generated profiles indicating the effect that
increasing Re to 10 has on the free-surface shape. Increasing Re increases the velocity
of the fluid travelling down the inclined plane, and this results in a shortening of
the wavelength of the capillary wave propagated upstream from each step face. The
first peak (trough) of each wave is also pushed towards its step face by the increased
inertia, and the amplitude of each wave is noticeably increased. This enlargement of
the capillary ridge provides an increased capillary pressure which helps to decelerate
the fluid in the x-direction and deflect the film round the corner of the step. Similar
effects have been observed in slide coating (Christodoulou & Scriven 1989) and also
in the flexible-walled channel flow studied by Heil (2000), where the shape of the
flexible wall containing the flow exhibits a behaviour comparable to that of the free
surface in figure 4 in response to an increase in fluid inertia.

Decré & Baret’s (2003) recent experimental study of thin water films flowing down
an inclined plane with topographies is another valuable source of data to compare
to numerical predictions. Figure 5 presents a comparison of FE and lubrication
solutions for free-surface profiles to those found experimentally by Decré & Baret
(2003) for the cases of flow over a small one-dimensional step-down, a step-up and
a trench. The Reynolds number was 2.45 for the steps and 2.84 for the trench. Note
that in this and subsequent comparisons in this section, liquid properties are taken
as µ = 0.001 Pa s, ρ = 1000 kg m−3 and σ =0.07 Nm−1, and the inclination angle is set
to θ = 30◦. In all three cases the FE and lubrication solutions are seen to be practically
indistinguishable (see below), to agree well with experiment and to reproduce
accurately the main features of the film thickness profiles, such as the characteristic
free-surface trough and capillary ridge just upstream of the step topographies and
the free-surface depression characteristic of flow over the trench.

Since the FE solutions do not have the inherent limitations of those based on lub-
rication theory, they can be used to assess the accuracy of the long-wave approxima-
tion in relation to flow over topography. Figures 6 and 7 show contours which
quantify the discrepancy between the two types of solution as step height and flow
rate are varied in flow over both step-up and step-down topography. The difference
is defined as the maximum distance between the predicted lubrication film thickness
and its Navier–Stokes counterpart, measured normal to the lubrication profile. This
measure is preferred to one based on an r.m.s. distance since both profiles satisfy the
same boundary conditions far upstream and downstream of the topography so that
the latter measure would be unduly influenced by the long asymptotic regions of the
domain where the two profiles are practically indistinguishable. Note that in making
the comparisons, the asymptotic film thickness, H0, is used as the length scale in both
the x- and z-directions. The contours therefore give the error between lubrication
theory and finite element analysis as a percentage of H0. For both step-up and step-
down topography the position of the maximum difference between corresponding
profiles is near the top of the steeply sloping part of the profile, as indicated by the
arrows in figures 5(a) and 5(b). The difference in the predictions of the height (depth)
of the capillary ridge (trough) is typically much smaller, roughly 1/4 of the maximum
difference. Note that the vertical scales in figures 6 and 7 indicate both the value of
the Reynolds number and corresponding flow rate; Ca therefore also varies (from
5.4 × 10−5 to 1.2 × 10−3) as the flow rate increases.

In both cases the contours are as expected. For small step size and flow rate, the
error is very small, but increases substantially with |s0| and Q0. There is, however, an
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Figure 5. Comparison between numerical predictions and Decré & Baret’s (2003) experi-
mental free-surface profile data for the flow of water over one-dimensional topographies: (a)
flow over a step-up with H0 = 100 µm, |s0| =0.2, and Re = 2.45; (b) flow over a step-down with
H0 = 100 µm, |s0| = 0.2, and Re= 2.45; (c) flow over a trench with H0 = 105 µm, |s0| = 0.19,
width 1.2 mm, and Re= 2.84. ——, Experimental data of Decré & Baret (2003); – – –,
lubrication theory; - · - · -, finite elements; · · ·, topography.

interesting difference between the two configurations: the contours in the step-down
case (figure 7) are rather more steep than those for the step-up. This indicates that
the relative step size is very much the dominant source of error in lubrication theory
modelling of flow over a downward step; neglecting fluid inertia makes only a small
difference, at least for smaller topographies and flow rates. In the step-up flow, the
contours are still quite steep, but noticeably less so than those in figure 7. Hence
inertia effects have a comparatively larger influence on the lubrication theory error
in this case. These results are intriguing when one observes that for flow over a
step-up topography, fluid inertia has only a minor influence on the extent of the eddy
region, while it has a much more pronounced effect for flow over a step-down – see
the streamline plots in figures 6 and 7. Interestingly, no lubrication solutions beyond
|s0| =0.8 were obtainable for the step-down case using the steady-state multigrid
lubrication solver; equilibrium solutions for |s0| > 0.8 were determined using the
time-dependent variant of the method mentioned in § 3.2.
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Figure 6. Contours illustrating the maximum error between the lubrication theory and
Navier–Stokes film profiles for a range of step heights and flow rates in flow over a step-up to-
pography. Example flow structures for |s0| = 1 are presented on the right. The upper picture cor-
responds to a flow rate of 10−5 m2 s−1 (H0 = 180 µm), where the lubrication results have an error
of 14%, and the lower to Q0 = 10−7 m2 s−1 (H0 = 40 µm), where the lubrication error is 7%.
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Figure 7. As figure 6 but for flow over a step-down topography. Example flow structures for
|s0| = 1.0 are presented on the right. The upper picture corresponds to a flow rate of 10−5 m2 s−1

(H0 = 180 µm), where the lubrication results have an error of 15–16%; the middle picture has
a flow rate of 10−6 m2 s−1 (H0 = 85 µm), and the lower has Q0 = 10−7 m2 s−1 (H0 = 40 µm), for
which the lubrication error is 10–11%.
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(a) (b) (c)

Figure 8. Structures seen in flow over a trench at Re= 1.5. The trench depth is equal to the
asymptotic thickness of the film passing over it. The width : depth aspect ratio is (a) 1.6 : 1,
(b) 2 : 1, and (c) 2.2 : 1.

As a final observation for flow over one-dimensional spanwise topographies, figure 8
illustrates the nature of the eddy structure present within a trench for the case Re = 1.5.
When the width : depth aspect ratio of the trench is sufficiently large, two separate
disjoint corner eddies are observed. At a critical aspect ratio of approximately 2.18
they meet to form a separatrix spanning the entire trench width. Within this is seen
the double-eddy flow structure reported in several cavity flow studies, see for example
Kelmanson & Lonsdale (1996), Gaskell, Savage & Wilson (1997), Gaskell et al. (1998),
or Fawehinmi, Gaskell & Thompson (2002). At smaller aspect ratios the structure
becomes a single eddy centre, reminiscent of the classical lid-driven cavity problem
(Shankar & Deshpande 2000). Higdon (1985) also reported such structures in his
study of semi-infinite shear flow over a trench, but his critical aspect ratio (between
3 and 4) for the separation of the corner eddies differs from that found here, mainly
due to the finite thickness of the film passing over the trench. Reducing the depth of
the trench relative to the film thickness shifts the critical value towards Higdon’s.

4.2. Flow over localized topography

The results of the previous section support the consensus that lubrication theory
provides remarkably good solutions to ‘thin film’ problems, even when it is applied
to situations where it is strictly speaking not valid – such as the flow over steep
topographies considered here. The lubrication formulation is now used to explore
free-surface responses to localized peaks and trenches with reference to Decré &
Baret’s (2003) experimental measurements for the trench cases.

Except where otherwise stated, flows are over a substrate inclined at 30◦ to the
horizontal. The liquid parameters are those for water as listed in the previous section,
while the asymptotic film thickness H0 = 100 µm. These parameters yield N = 0.12 and
Lc = 0.78 mm. The small value of N indicates that the normal component of gravity
will have little effect on the free-surface shape. The topography steepness parameter
in equations (2.19) and (2.20) is set to γ = 0.05, a value below which it is found to
have no discernible effect on the numerical predictions. The Reynolds number for the
flow is 2.45 and the topography depth/height is |s0| =0.25. Figures 6 and 7 therefore
suggest that Navier–Stokes solutions will differ only slightly from the lubrication
theory predictions.

Consider the case of flow over a square trench located at (xt , yt ) = (30.77, 50)
with |s0| =0.25 and wt = 1.54. Decré & Baret (2003) have already demonstrated that
streamwise and spanwise profiles of the free surface produced by this flow agree well
with those predicted by the linear lubrication theory of Hayes et al. (2000). Hence it is
not surprising that the experimental data are also well-matched by the predictions of
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Figure 9. Comparison of predicted (full line) and experimental (dashed line) streamwise
free-surface profile at different spanwise locations: (a) y∗ =0; (b) y∗ =Lc/2; (c) y∗ = Lc;
(d ) y∗ = 3Lc/2; (e) y∗ = 2Lc; (f ) y∗ =5Lc/2. The trench is square, and in this cross-section lies
in the region −0.77 � x∗ � 0.77.

the present formulation, as demonstrated in figure 9, which compares corresponding
streamwise profiles.

A complete three-dimensional visualization of the free surface is given in
figure 10(a), clearly showing the characteristic ‘horseshoe’-shaped ‘bow wave’ and
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Figure 10. Flow of a thin water film over square topographies with w =1.54, A = 1, and
|s0| = 0.25. In the three-dimensional views, the flow is from bottom-left to top-right: (a) trench;
(b) peak. In the contour plots, flow is from left to right and the contours show free-surface
height. Contour values are chosen to be equal in magnitude but opposite in sign: (c) trench;
(d ) peak. The crossed dashed lines indicate the centre of the topography and the arrow
indicates the direction of flow.

the deeper depression over the trench itself, followed by a peak which Decré &
Baret (2003) refer to as the ‘downstream surge’. This latter feature does not have an
equivalent in the flow over one-dimensional topographies, and Decré & Baret (2003)
admitted that its cause is not properly understood. The present authors believe that
an explanation is provided by considering the flow rate into and out of the trench.
Since the trench is finite in length and width, fluid will enter the trench both in the
streamwise direction (over the upstream wall) and in the spanwise direction (over the
sidewalls) due to lateral pressure gradients resulting from the spanwise curvature of
the free surface. Since in a steady flow the fluid entering the trench must then leave
it (over the downstream wall), the downstream surge simply arises to allow the fluid
to exit the trench across a shorter width than that across which it entered. In the
one-dimensional case there is no difference in the widths over which fluid enters and
leaves the trench and therefore no cause for a downstream ridge.

Figure 10(b) gives the view corresponding to flow over an ‘equal-but-opposite’
square peak topography, where the free surface appears to be a straightforward
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Square trench Square peak

A0 A1 A2 K Curve A0 A1 A2 K

7.0 8.7 15.0 9.50 1 7.3 9.0 14.4 9.78
4.5 5.3 21.4 6.50 2 7.8 6.5 17.3 6.75
2.4 2.3 27.9 3.28 3 3.3 2.6 27.0 3.41

Table 1. Curve fitting parameters for equations (4.1) and (4.2) corresponding to the curves
labelled in figure 11. Note that the square-peak parameters are given for comparison only: the
curves are not plotted in figure 11.

inversion of that over the trench. Decré & Baret (2003) did not consider peak-
type topographies, but the plot in figure 10(b) is very similar to figure 3 in Hayes
et al. (2000) which gives the free surface produced in response to a Dirac delta peak
topography. Note that the downstream surge is now replaced by a depression (though
this is not visible from the viewpoint in figure 10b). The above flow-rate argument can
explain this feature too: fluid which passes over the top of the topography ascends
the peak in the streamwise direction over the upstream wall, but is shed off the
topography symmetrically by spanwise components over the sidewalls, leading to a
reduced flow rate per unit width over the middle of the downstream wall and the
consequent reduction in film thickness there.

Figures 10(c) and 10(d) show contour plots of free-surface height for the two
topographies. The contour values are chosen to be equal in magnitude but opposite
in sign, and show that the patterns produced are indeed very similar, but the surfaces
are not quite mutual inverses. Again, the figures compare well with Decré & Baret’s
figure 7 and figure 8 in Hayes et al. (2000) respectively.

The flows can be explored in more quantitative detail by examining the positions
of spanwise local extrema in film thickness calculated by finding where ∂h∗/∂y∗ = 0.
Figure 11(a) shows the extrema for the trench and peak flows on the same plot, from
which it is easy to see that the patterns produced are extremely close in shape but that
there is a slight downstream shift between the two. This feature will be considered
again later.

Guided by the form of Hayes et al.’s (2000) linear lubrication theory, Decré &
Baret (2003) noted the self-similar behaviour of the film thickness with respect to
y/x1/4 far downstream of the topography. This suggests that the downstream spread
of the extrema could be fitted by a power-law of the form

y∗ = K(x∗)0.25. (4.1)

However, while this expression does indeed describe the behaviour far enough
downstream of the topography, it is of course not valid close to the origin (i.e.
the topography) and cannot describe the shape of the bow wave upstream of the
topography. An alternative fitting function takes the form

y = ±A1 cosh−1

(
x − A2

A0

)
+ yt , (4.2)

where x and y are the unshifted coordinates with origin as shown in figure 1. For the
case of flow over the square trench, figure 11(b) shows the location of the spanwise
free-surface extrema together with fitting curves following equation (4.2). The fitting
parameters are given in table 1 and, as can be seen, the curves fit the data extremely
well over the entire solution domain, 0 � x, y � 100. Note that in this figure, curves 1
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Figure 11. (a) Positions of extrema in film thickness for the flow past the square trench (�)
and square peak (+) of figure 10; (b) extrema for the trench case fitted using equation (4.2);
(c) comparison of curves fitted using equation (4.1), shown as solid lines, and equation (4.2),
shown as dashed lines. Fitting constants are given in table 1.
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θ H0 Lc U0

(deg.) (µm) (mm) (mms−1) wt s0 N

60 83.3 0.612 29.5 1.96 0.30 0.04
30 100.0 0.781 24.5 1.54 0.25 0.12
10 142.3 1.249 17.2 0.96 0.18 0.36
5 179.0 1.697 13.7 0.71 0.14 0.66
1 306.0 3.468 8.0 0.35 0.08 2.78

Table 2. Influence of inclination angle on various other parameters. The fluid properties and
the flow rate per unit width are fixed at the following values for all angles: ρ = 1000 kgm−3,
µ= 0.001 Pa s, σ =0.07N m−1 and Q0 = 1.635 × 10−6 m2 s−1.

and 3 correspond to spanwise local minima and curve 2 to the spanwise maxima of
the upstream capillary ridge (cf. figure 10a). The data points to the left of curve 1
in figure 11(a, b) correspond to very slight ridges and depressions which cannot be
resolved in figure 10(a) and are not considered further.

The two fitting expressions (4.1) and (4.2) are compared in figure 11(c). From
approximately 10 capillary lengths downstream of the topography, the two sets of
curves are practically indistinguishable. However, the clear distinction between the
plots is that the inverse function (4.2) describes the positions of the spanwise extrema
upstream of the topography and thus over the entire flow domain.

The function (4.2) provides useful insight into the behaviour of the capillary waves
since they are predicted to meet the centreline y = yt at x = A0 +A2 or, in physical
coordinates, X0 = (A0 + A2)Lc. As the topography is centred at (Xt, Yt ) = (xt , yt )Lc,
it follows that the distance, d say – see figure 11(b) – between the point where
the capillary wave intersects the centreline and the topography will be proportional
to the capillary length and is given by d = Lc|xt − (A0 + A2)|. This means that waves
upstream of the topography are shifted further upstream when Lc increases while those
downstream of it are shifted further downstream. The former prediction is consistent
with Mazouchi & Homsy’s (2001) finding, for one-dimensional topographies, that as
capillary number decreases (i.e. Lc increases via equation (2.17)) the capillary ridge
moves further upstream. Note that expression (4.2) applies equally well to the free-
surface extrema in the flow over a square peak. Though not shown graphically, the
fitting parameters for the peak are also given in table 1 for completeness.

While providing a very good description of wave spread, it should be noted that
the function (4.2) does, however, have the disadvantage of requiring three parameters
rather than one to provide a fit, and of course it does not predict the streamwise
decay in amplitude available from the self-similar asymptotics.

Kalliadasis et al. (2000) demonstrated that in the flow over a one-dimensional step-
up and step-down, increasing the normal component of gravity could reduce or even
suppress entirely the capillary trough/ridge, making the free surface conform much
more closely to the topography. In the present formulation, the parameter controlling
the relative strength of this gravity component is N = Ca1/3 cot θ . From equation (2.9)
it can be seen that N depends on the fluid properties, the flow rate and the inclination
angle. It is therefore rather difficult to isolate the effect of N , since changing it
necessarily changes the asymptotic film thickness and the maximum velocity in the
film. The scenario most easily realized experimentally is to work with a given fluid at
a fixed flow rate and to control N by changing the inclination of the substrate. The
values of various parameters corresponding to selected angles are given in table 2,
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Figure 12. Close-up three-dimensional cut-away views illustrating the effect of inclination
angle on the free surface generated in flow over the square trench of figure 10. (a) θ = 60◦

(N = 0.04), (b) θ = 10◦ (N = 0.36), (c) θ = 5◦ (N =0.66), (d ) θ = 1◦ (N = 2.78). Note that since
Lc depends on θ , the in-plane coordinates are instead scaled by the (constant) topography
width (see text) while h∗ gives the deviation of the free surface from uniformity as a fraction
of the topography depth. The topography is centred at (0,0), and the direction of flow is given
by the arrow in each plot. The surface is symmetrical about ȳ = 0. See table 2 for the effect
of θ on other parameters.

and the effect of varying N in this way is shown in figures 12 and 13. Note that
since Lc changes with θ , the in-plane coordinates are rescaled in terms of the fixed
topography width. With reference to figure 1, the new coordinates (with origin at the
topography) are given by (x̄, ȳ) = (X − XT , Y − YT )/WT .

Consistent with Kalliadasis et al. (2000), increasing N (i.e. decreasing θ) reduces
and eventually eliminates the curved upstream capillary ridge. Other surface features
are also dramatically reduced: the depression over the trench is much shallower, yet
extends further upstream from the trench, and the downstream surge is much reduced
in height, though it is still present. When interpreting these results, however, one
should bear in mind that H0 increases as θ decreases (table 2), and the free surface is
expected to become less sensitive to the topography for thicker films.

A consequence of reducing the inclination angle at constant flow rate (or constant
H0) is a decrease in the speed of the fluid in the film. This manifests itself in the
shape of the disturbance created by the topography, as shown by the inset plot in
figure 13. The plot gives the positions of points where ∂h∗/∂ȳ =0, and again the
in-plane coordinates are scaled with the topography width. The flow is symmetrical
about ȳ = 0 but, for the sake of clarity, only half of each curve is shown. As one
would expect, the reduced film speed leads to a wave pattern which is much more
spread out, and the wavelength of the upstream disturbance increases with decreasing
inclination. The downstream surge does not change its position, but the effect of its
presence also spreads further out at smaller θ .
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Figure 13. The effect of θ on the amplitude and spread of the disturbance created by the
square trench of figure 10. As in figure 12, the in-plane coordinates are scaled with the
topography width rather than Lc since the latter is dependent on θ . The main plot shows
streamwise profiles taken along ȳ = 0, with the topography indicated by the thick solid line
at the bottom – note, however, that the height of the topography is not shown at its true
value: it in fact lies at h∗ = −1/s0. The inset graph shows the positions of local extrema in film
thickness, i.e. points at which ∂h∗/∂ȳ = 0, and the small square at (0,0) indicates the position
and extent of the topography. The same legend applies to both the main and inset graphs.
The numbers 1, 2, 3 label corresponding extrema for each angle – see also figure 11(b, c).

Returning to the θ = 30◦, N = 0.12 flow, figure 14 demonstrates the effect of increas-
ing the aspect ratio, A, of the trench by extending its spanwise length. The viewpoint
chosen for these visualizations is on the opposite side of the topography to that in
figures 10 and 12, giving a reverse view of the free-surface disturbance. When A is
increased to 5 (figure 14b), the depth of the depression over the trench is greatly
increased and the height of the curved capillary ridge upstream of the topography is
also increased. The central downstream surge is still clearly present, though it decays
in amplitude more slowly than that following the square trench. Increasing A to 8.33
widens the upstream ridge, and introduces a bifurcation in the downstream surge
such that two smaller surges lie either side of the centreline of the topography, see
figure 14(c). As A increases further, the free surface appears to become flat in the
central region just downstream of the trench; coupled with the flattening of the top of
the upstream ridge (figure 14d), this shows that the flow near to the centreline x∗ =0
approximates closely that over a one-dimensional trench. The above observations are
clarified by overlaying the centreline profiles as in figure 15.

Decré & Baret (2003) showed that their measured profiles for the square trench
agreed well with linearized lubrication theory, but tested the linearity of their results
further by comparing the measured profile for the trench of aspect ratio 5 with a
linear superposition of five suitably shifted square-trench profiles. The result was that
the superposition profile approximated fairly well the measured profile, indicating
that nonlinear effects are small. The same test can be made using numerical solutions,
and the result is given in figure 16, which also includes the experimental data for
comparison. The plot shows that the linear superposition of numerical solutions is
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Figure 14. Three-dimensional rear-view of the free surface generated by flow (from top-right
to bottom-left) over trenches, showing the effect of trench aspect ratio on the downstream
surge. (a) A = 1; (b) A =5; (c) A = 8.33; (d ) A = 15.
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Figure 15. Effect of topography aspect ratio on (a) streamwise free-surface profiles y∗ = 0,
and (b) spanwise free-surface profiles along x =0. For comparison, the profiles for flow over
the corresponding one-dimensional spanwise trench are also given.

indeed very close to the direct solution for the A=5 trench, except in the bottom
of the trench where it over-predicts the depth of the depression. In contrast, the
superposition of the experimental data agrees very well with the measured profile
in terms of the depression depth, but is not so close near the walls of the trench.
Note that while they exhibit a discrepancy in the trough depth, the full numerical
solution and the numerical superposition are both still in good agreement with the
experimental data.



Gravity-driven flow over topographies 275

–20 –10 0 10 20 30
x*

–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

h*
Linear superposition (numerical)
LT = 1.52 Lc, A = 5 (numerical)

Linear superposition (Decré & Baret 2003)
Experiment (Decré & Baret 2003)

Figure 16. Streamwise free-surface profiles for a spanwise trench of aspect ratio 5: comparison
between the full numerical solution and a linear superposition of five suitably shifted solutions
for flow over a square trench. Also shown are the direct experimental measurements and
corresponding superposition of square-trench measurements from Decré & Baret (2003).

The near-linearity of the results in figure 16 and in Decré & Baret (2003) supports
the observation by those authors that linear superposition of the responses to elemen-
tary topographies can reliably construct the response to more complex topographies –
at least for flow conditions similar to those considered here. The accuracy of the
linear superposition is perhaps most rigorously tested by adding together the solutions
corresponding to a pair of equal but opposite topographies, i.e. a trench and a peak,
since if the response of the free surface to topographic features is linear, the resulting
surface should be planar. From the analysis of Stillwagon & Larson (1990), such a
linear response is to be expected in the limits of very small Ca, when the free surface
is almost planar, or larger Ca if the height (depth) of the topography is much smaller
than the film thickness (i.e. |s0| � 1).

Figure 17(a) shows the surface constructed by adding together the two surfaces in
figures 10(a) and 10(b), i.e. the responses to equal but opposite square topographies
located at the same position. Recall that in this case |s0| = 0.25. It has already been
noted in the discussion of the results in figures 10 and 11 that, although these two
free surfaces are very close to being inverses of each other, there are slight differences
in features such as the positions of the spanwise extrema. Hence it is not surprising
that the surface in figure 17(a) is not planar. However, the three-dimensional
visualization does not give a true impression of the scale of the features remaining
in the surface; figure 17(b) shows the streamwise profiles through the centreline for
the two topographies together with their sum. From this it can be seen that although
there is still a disturbance in the surface, its amplitude is only about 7% of that in the
original profiles. By way of comparison, figure 17(c) shows the streamwise profiles
and their sum when |s0| is reduced to 0.1. In this case, where the response is expected
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Figure 17. Superposition of the free surfaces generated by flows over equal but opposite
square topographies with w =1.54. (a) Three-dimensional view of the constructed surface
when |s0| = 0.25; (b) streamwise free-surface profiles along y∗ = 0 compared to those of the
individual flows with |s0| = 0.25; (c) as (b) but with |s0| = 0.1.

to be more linear, the variation in the constructed profile is indeed reduced – to
below 2%.

Finally, an example is given in figure 18 of an attempt to reduce the free-surface
disturbance caused by a square peak topography by modifying the topography
surrounding the peak. In this case, a simple shallow trench is created around the peak;
the topography sizes are given in the figure. The streamwise profile along the centreline
(figure 18b) shows that although the composite topography produces a deeper
depression in the free surface, the overall disturbance is smaller (the r.m.s. deviation
over the whole domain is 0.62% for the peak alone and 0.26% for the peak with a
trench). In addition, the film thickness relaxes more quickly to equilibrium downstream
of the trench. The contour plots (figure 18c, d) also show that the region of maximum
disturbance is smaller for the composite topography, despite its greater extent.

The minimization of free-surface disturbances is of great interest in the manu-
facturing processes mentioned in § 1, and the modification of base-layer topographies
may offer a useful alternative to other means of free-surface control such as localized
heating (Gramlich et al. 2002). The present authors echo Decré & Baret’s (2003)
closing remarks that the inverse problem of determining topographies given a desired
free-surface shape would be a useful and interesting future research area.
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Figure 18. Reducing the free-surface disturbance caused by a square peak by surrounding the
peak by a shallow trench: (a) geometry of the composite topography; (b) streamwise profile
along y∗ = 0 for the square peak alone (solid line) and the composite topography (dashed line);
(c) contours of free-surface height generated by the peak alone; (d ) corresponding contours
for the composite topography.

5. Conclusions
Thin film flow over various one- and two-dimensional topographies has been studied

by means of finite element solutions of the Navier–Stokes equations and multigrid
finite difference predictions based on lubrication theory. In the one-dimensional case,
Stokes solutions for the flow over a wide trench were shown to be in excellent
agreement with those of Mazouchi & Homsy (2001), and Navier–Stokes solutions
with Re = 10 revealed that the effect of increasing Re is to increase the amplitude of
the free-surface disturbances while slightly reducing their wavelength.

Navier–Stokes solutions for the one-dimensional topographies and flow conditions
considered by Decré & Baret (2003) showed very good agreement with those authors’
experimental measurements, as did predictions from lubrication theory. The step-up
and step-down geometries were then used to test the accuracy of the lubrication
analysis relative to Navier–Stokes calculations over a range of step heights and flow
rates (and hence Reynolds numbers). Contours of constant error revealed that even
when the step height is equal to the film thickness and the flow rate is such that
Re = 15 (with Ca ≈ 10−3), the maximum error between the predicted profiles is only
about 15%. This lends further support to the general experience that lubrication
theory can make good predictions even when topographies are steep.
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The discussion of three-dimensional flow focused mainly on that over a square
trench, calculated using lubrication theory. The predicted free-surface shapes agree
well with the experiments of Decré & Baret (2003), and particular thought was
given to the cause of the ‘downstream surge’ which is not present in the flow over
one-dimensional topographies. A simple explanation for the elevated surface behind
the trench is that fluid flows into the trench across a greater width (i.e. over the
upstream and side walls) than that across which it must exit. The depression in the
free surface behind a square peak topography can be similarly explained. The normal
component of gravity was shown to suppress the upstream free-surface disturbance, as
expected from the one-dimensional analysis of Kalliadasis et al. (2000), but it does not
completely inhibit the downstream surge. This is consistent with the above explanation
for the appearance of the surge. Three-dimensional rear-view visualizations of the
free surface showed how the downstream surge separates into two as the aspect ratio
of the trench is increased and how the flow over the centre of the trench approaches
the one-dimensional case.

The positions of the spanwise local extrema in film thickness produced by flow past
a square trench and an equal but opposite square peak were plotted as a function of
the in-plane coordinates, and an inverse hyperbolic cosine function was demonstrated
to fit these loci extremely well even upstream of the topography. This gives a complete
description of the spread of the bow wave, but does not capture the rate of decay
in amplitude. The equal square peak and trench were used to test the linearity of
the free-surface response to topography by superimposing the individual responses to
see if the surface produced was planar. While not being perfectly planar, there was
only a slight deviation of the order of 7% of the individual disturbances when the
topography depth was a quarter of the film thickness. Reducing the relative depth of
the topography to 0.1 resulted in an even smaller deviation of the order of 2%.

An example was also given of a modification to a square-peak topography which
substantially reduces the free-surface disturbance caused by it. Such modifications of
essential topographic features may help to minimize troublesome free-surface features
at later stages in manufacturing processes.

The authors are grateful to Philips Electronics, Eindhoven, for sponsoring this work
and to Michel Decré and Jean-Christophe Baret in particular for their keen interest
in the subject matter, and for providing their experimental data in electronic form for
comparison purposes.
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